
Lokmanya Tilak Jankalyan Shikshan Santha's

Lokmanya Tilak College of Engineering

Sector 4, Vikas Nagar, Koparkhairane, Navi Mumbai 400709

An Autonomous Institute Affiliated to University of Mumbai

Minor /Honours Degree (18 Credits) CURRICULUM STRUCTURE

For

SECOND YEAR ENGINEERING

(BASED ON NEP 2020)

w.e.f. A.Y. 2025-26

Approved by Academic Council on 15/04/2025

Preface

In alignment with the vision of the National Education Policy (NEP) 2020, engineering education in India is undergoing a transformative shift toward greater flexibility, interdisciplinarity, and learner-centric design. A key feature of this transformation is the integration of the Honours and Minor program into the undergraduate engineering curriculum. This document outlines the framework and rationale behind the Honours/Minor structure, which aims to empower students to pursue academic excellence in their core engineering discipline while exploring emerging and complementary fields. The Honours track offers depth through advanced courses and practicalbased learning in the student's major area, whereas the Minor provides breadth by enabling structured learning in a secondary area of interest. By encouraging cross-disciplinary engagement, the program is designed to cultivate well-rounded engineers who are not only technically sound but also adaptable, innovative, and responsive to the needs of a rapidly changing world. This curriculum model seeks to bridge the gap between academia and industry, while also fostering critical thinking, creativity, and lifelong learning. This preface introduces the detailed structure, credit requirements, and intended outcomes of the Honours/Minor offerings in the engineering curriculum, and serves as a guide for students, faculty, and academic administrators involved in its implementation and continual development.

The Government of Maharashtra has instructed autonomous colleges to update their curriculum and begin implementing the National Education Policy (NEP) 2020. We are fully committed to ensuring the effective and meaningful adoption of NEP 2020 in its true essence. At "Lokmanya Tilak College of Engineering", the holistic development of learners has always been our top priority and central focus. LTCE embraced the NEP philosophy as early as 2022 wherein we have introduced the concept of Honours and Minors programs on emerging fields as per the guidelines of University of Mumbai and in 2024, we proudly graduated our first batch under this holistic curriculum. The autonomous curriculum for 2024-28 is structured in line with the recommendations of NEP 2020, AICTE, and UGC. The Honors and Minor Degree programs offer students the flexibility to explore emerging fields like Blockchain Technology, Cyber Security, Artificial Intelligence, Data Science, 3D printing, Electric Vehicles, etc. and build specialized skills beyond their core curriculum. By integrating these options, LTCE aims to prepare well-rounded graduates ready to meet the evolving demands of industry and research.

Sd/-

Sd/-

Dr. Sheeba P. S. Dean, Academics & Research Dr. Subhash K. Shinde Principal

Lokmanya Tilak Jankalyan Shikshan Sanstha's

Lokmanya Tilak College of Engineering

An Autonomous Institute Affiliated to University of Mumbai

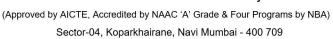
Minor/ Honours Degree Program Mapping with Engineering Programs

In alignment with AICTE and MH Govt. guidelines, the Honours and Minor degree programs have been introduced by the institute to enable students to pursue additional specialized courses in emerging areas of their interest, thereby enhancing their competence in those domains. Honours or Minor Degree will cumulatively require additional **18 credits** in the specified area in addition to the credits essential for obtaining the Under Graduate Degree in Major Discipline.

Minor/ Honours' degree program in emerging technology to be chosen by eligible students studying in second year of various engineering programs are elaborated in following table to bring clarity to all stakeholders including students and faculty members. Each eligible student can opt for maximum one minor/ honour's program at a time.

Sr. No.	Name of Minor/ Honours Degree Programs	Eligible Programs	
	ML	Computer Engineering/ CSE (AI & ML)/ CSE (DS)/	
1.	Blockchain Technology	Electronics & Telecommunication/ Electrical	
		Engineering/ Mechanical Engineering	
	Artificial Intelligence &	Computer Engineering/ CSE (IoT & CSBT) /	
2.	Data Science	Electronics & Telecommunication/ Electrical	
		Engineering/ Mechanical Engineering	
	7	Computer Engineering/ CSE (AI & ML)/ CSE (DS)/	
3.	Cyber Security	Electronics & Telecommunication/ Electrical	
		Engineering/ Mechanical Engineering	
		Computer Engineering/ CSE (AI & ML)/ CSE (DS)/	
4.	3D Printing	CSE (IoT & CSBT)/ Electronics & Telecommunication/	
		Electrical Engineering / Mechanical Engineering	
		Computer Engineering/ CSE (AI&ML)/ CSE (DS)/	
5.	Electric Vehicles	CSE (IoT & CSBT)/ Electronics & Telecommunication/	
		Electrical Engineering / Mechanical Engineering	

Eligibility Criteria for Students:


- Students with no backlog in Semester I, II, and III.
- The CGPI (based on semester I, II, and III) of the students must be 7.50 and above.
- For Direct Second Year (DSE) admitted students No backlog in semester III and CGPI must be 6.75 and above.
- The Minor/Honours degree program can be opted only during regular engineering studies.
- The student shall complete the Minor/Honours degree program in stipulated four semesters only.

Lokmanya Tilak Jankalyan Shikshan Sanstha's

Lokmanya Tilak College of Engineering

An Autonomous Institute Affiliated to University of Mumbai

Minor/ Honours Courses* (18 Credits)

			Teac Schei	hing me	Crec Assig				Exan	ninatio	n Scheme		
Semester	Course		L	Р	L	P	Total	Internal /	Assessment		Semester Exam	Oral /	
	Code	Course Name					Credits	Mid Sem Exam (MSE)	Continuous Internal Evaluation (CIE)		Duration (Hrs)	Oral / Practical To	Total
IV	XXMC401	Honor/ Minor Course 1	4	/	4		4	20	20	60	2	i	100
V	XXMC501	Honor/ Minor Course 2	4		4	J	4	20	20	60	2	-	100
VI	XXMC601	Honor/ Minor Course 3	3		3		3	20	20	60	2	-	100
VI		Honor/ Minor Lab Course 3		2	8	<u>\$</u> 1	1	-	25	1		25	50
VII	XXMC701	Honor/ Minor Course 4	4		4		4	20	20	60	2		100
VII	XXCP701	Capstone Project		4	_	2	2		50	NZ		50	100
	Total	7 / /	15	6	15	- 3	18	80	155	240	8	75	550

^{*} Eligibility: Students with no backlog in Semester I, II, and III and the CGPI must be 7.50 and above.

For Direct Second Year (DSE) admitted students: No backlog in semester III and CGPI must be 6.75 and above.

Lokmanya Tilak Jankalyan Shikshan Sanstha's

Lokmanya Tilak College of Engineering An Autonomous Institute Affiliated to University of Mumbai

(Approved by AICTE, Accredited by NAAC 'A' Grade & Four Programs by NBA) Sector-04, Koparkhairane, Navi Mumbai - 400 709

Minor/ Honours Courses

Honors/Minors Degree		Blockchain Technology (BT)	Artificial Intelligence & Data Science (AD)	Cyber Security (CS)	3D Printing (DP)	Electric Vehicles (EV)
Semester	Credits			Course Name		
IV	4	BTMC401: Blockchain & Crypto Currencies	ADMC401: Mathematics for AI & Data Science	CSMC401: Network Security & Ethical Hacking	DPMC401: Introduction to CAD	EVMC401: Vehicular Systems and Dynamics
V	4	BTMC501: Smart Contracts & Use Cases	ADMC501: Machine Learning	CSMC501: Digital Forensic	DPMC501: 3D Printing: Introduction & Processes	EVMC501: EV Drive and Energy Sources
VI	3	BTMC601: Blockchain Applications	ADMC601: Data Science for Business Intelligence	CSMC601: Information Security Management Vulnerability	DPMC601: Applications of 3D Printing	EVMC601: Automotive Controller and Auxiliary Systems
	BTMCL601: ADM 1 Blockchain Data Programming for Bu	ADMCL601: Data Science for Business Intelligence Lab	CSMCL601: Assessment & Penetration Testing Lab	DPMCL601: Digital Fabrication Lab	EVMCL601: Electric Vehicle Lab	
VII	4	BTMC701: NFT and Decentralised Finance	ADMC701: Deep learning and Gen Al	CSMC701: Application Security & Laws	DPMC701: 3D Printing in Medical Technology	EVMC701: Electric Vehicle System Design
VII	2	BTCP701: Capstone Project	ADCP701: Capstone Project	CSCP701: Capstone Project	DPCP701: Capstone Project	EVCP701: Capstone Project

Lokmanya Tilak Jankalyan Shikshan Sanstha's Lokmanya Tilak College of Engineering

An Autonomous Institute Affiliated to University of Mumbai

(Approved by AICTE, Accredited by NAAC 'A' Grade & Four Programs by NBA)

Sector-04, Koparkhairane, Navi Mumbai - 400 709

Second Year Engineering Curriculum: Semester IV

Minor/ Honours: Blockchain Technology

			Examir	nation Schen	ne			Lecture
			Marks Distribution	1		am on (Hrs)		4 Hrs
Course Code	Course Name	Semester	Total	Total Credits				
	<	Mid Sem Exam (MSE)	Continuous Internal Evaluation (CIE)	Exam (ESE)	MSE	ESE	Marks	4
BTMC401	Blockchain & Cryptocurrency	20	20	60	1	2	100	

Prerequ	isite: Basic concepts of cryptography and security
Course	Objectives: The course aims
1	To get acquainted with the concept of Block and Blockchain.
2	To learn the concepts of consensus and mining in Blockchain.
3	To get to know cryptographic concepts in cryptocurrency.
4	To get familiar with bitcoin and its history.
5	To understand the blockchain platform and its terminologies.
6	To understand the concept of Ethereum Ecosystem.
Course	Outcomes: Learners will be able to
1	Describe the basic concept of Block chain.
2	Associate knowledge of consensus and mining in Block chain.
3	Apply the concept of cryptography in cryptocurrency at an abstract level.
4	Enumerate the Bitcoin features and its alternative options.
5	Analyze different types of blockchain platforms.
6	Illustrate the use of the Ethereum ecosystem.

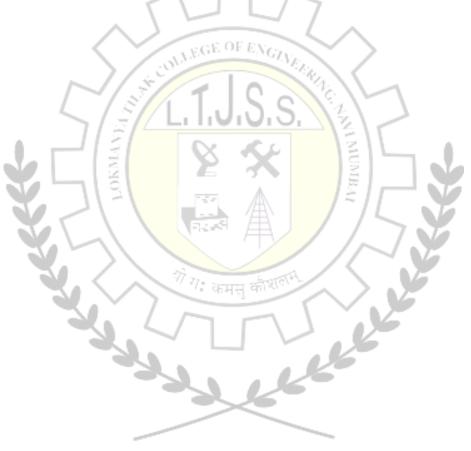
Module	Detailed Contents	Hrs.	CO Mapping
01	Introduction to Blockchain What is a blockchain, Origin of blockchain (cryptographically secure hash functions), Foundation of blockchain: Merkle trees Components of blockchain, Block in blockchain, Types: Public, Private, and Consortium, Consensus Protocol, Limitations and Challenges of blockchain. Structure of a Block, Block Header, Block Identifiers: Block Header Hash and Block Height, The Genesis Block, Linking Blocks in the Block chain, Merkle Trees and Simplified Payment Verification (SPV).	08	CO1
02	Consensus and Mining Decentralized Consensus, Byzantine Generals Problem, Independent Verification of Transactions, Mining Nodes, Aggregating Transactions into Blocks, Constructing the Block header, Mining the Block, Validating a New Block, Assembling and Selecting Chains of Blocks, Block chain Forks Self-learning Topics: Study different consensus algorithms	08	CO2
03	Cryptographic primitives, Asymmetric cryptography, Public and private keys. Cryptocurrency: History, Bitcoin, Altcoin, and Tokens (Utility and Security), Cryptocurrency wallets: Hot and cold wallets, Cryptocurrency usage, Transactions in Blockchain, UTXO and double spending problem Bitcoin blockchain: Consensus in Bitcoin, Proof-of-Work (PoW), Proof-of-Burn (PoB), Proof-of-Stake (PoS), and Proof-of-Elapsed Time (PoET), Life of a miner, Mining difficulty, Mining pool and its methods	08	соз
04	Introduction to Bitcoin What is Bitcoin and the history of Bitcoin, Getting the first bitcoin, finding the current price of bitcoin, sending and receiving bitcoin, Bitcoin Transactions. Keys and addresses, Wallets and Transactions: Public Key Cryptography and Crypto currency, Private and Public Keys, Bitcoin Addresses, Base58 and Base58Check Encoding, Nondeterministic (Random) Wallets, Deterministic (Seeded) Wallets, HD Wallets (BIP-32/BIP-44), Wallet Best Practices, Using a Bitcoin Wallet, Transaction Outputs and Inputs, Transaction Fees, Transaction Scripts and Script Language, Turing Incompleteness, Stateless Verification, Script Construction (Lock + Unlock), Pay-to-Public-Key-Hash (P2PKH), Bitcoin Addresses, Balances, and Other Abstractions Self-learning Topics: Study the website coinmarketcap.com/ Visit and use https://bitcoin.org/en/	10	CO4
05	Introduction to Blockchain Platforms	08	CO5

	Ganache for Ethereum blockchain (e.g. e-voting) applications on Ganache framework. Self-learning Topics: Emerging blockchain platforms		
06	Ethereum Ecosystem Ethereum components: miner and mining node, Ethereum virtual machine, Ether, Gas, Transactions, accounts, swarm and whisper, Ethash, end to end transaction in Ethereum, architecture of Ethereum. Types of test-networks used in Ethereum, Transferring Ethers Using MetaMask, Mist Wallet, Ethereum Frameworks, Case study of	10	CO6
	Why Blockchain Platform: Platform types, Public, Private, technology requirements for implementation. Introduction to Smart Contracts, Types of Smart Contracts, Structure of a Smart Contract, Smart Contract Approaches, Limitations of Smart Contracts, Hyperledger, Other Blockchain platforms.		

Text Bo	oks:
1	Blockchain Technology, Chandramouli Subramanian, Asha A George, Abhilash K. A
	and Meena Karthikeyan, Universities press.
2	Imran Bashir, Mastering Blockchain: A deep dive into distributed ledgers, consensus protocols, smart contracts, DApps, cryptocurrencies, Ethereum, and more, 3rd Edition, Packt Publishing
3	Mastering Bitcoin, Programming The Open Blockchain, 2nd Edition by Andreas M. Antonopoulos, June 2017, O'Reilly Media, Inc. ISBN: 9781491954386.
4	Bitcoin and Cryptocurrency Technologies: A Comprehensive Introduction, July 19, 2016, by Arvind Narayanan, Joseph Bonneau, Edward Felten, Andrew Miller, Steven Goldfeder, Princeton University Press.
5	Mastering Ethereum, Building Smart Contract and Dapps, Andreas M. Antonopoulos Dr. Gavin Wood, O'reilly.
Referen	ces:
1	Blockchain for Beginners, Yathish R and Tejaswini N, SPD
2	Blockchain Basics, A non-Technical Introduction in 25 Steps, Daniel Drescher, Apress
3	Blockchain with Hyperledger Fabric, Luc Desrosiers, Nitin Gaur, Salman A. Baset,
	Venkatraman Ramakrishna, Packt Publishing
4	Mastering Ethereum: Building Smart Contracts and Dapps Paperback by Andreas
	Antonopoulos, Gavin Wood, Publisher(s): O'Reilly Media
5	Mastering Blockchain, by Imran Bashir, Third Edition, Packt Publishing
Useful L	inks:
1	https://andersbrownworth.com/blockchain/
2	https://andersbrownworth.com/blockchain/public-private-keys/
3	https://www.coursera.org/learn/cryptocurrency
4	https://coinmarketcap.com/
5	NPTEL: https://onlinecourses.nptel.ac.in/noc19_cs63/preview
	•

A. Mid Semester Exam (20 Marks)

Mid semester examination will be based on 40 % to 50% of the syllabus.


B. Continuous Internal Evaluation (20 Marks)

1. Assignment: 5 Marks

2. Quiz/Open book test/Presentation: 10 Marks

3. Regularity and attendance: 5 Marks

End Semester Examination (60 Marks)

Minor/ Honours: Artificial Intelligence & Data Science

Course Code		Examination Scheme						Lecture
		Marks Distribution Exam Duration (Hrs)						4 Hrs
	Course Name	Interna	al Assessment	End Semester			Total Marks	Total Credits
		Mid Sem Exam (MSE)	Continuous Internal Evaluation (CIE)	Exam (ESE)	MSE	ESE	IVIATES	4
ADMC401	Mathematics for AI & Data Science	20	20	60	1	2	100	

Prerequ	isite: Applied Mathematics, Discrete mathematics
Course	Objectives: The course aims to
1	To build an intuitive understanding of Mathematics and relating it to Artificial Intelligence and Machine Learning.
2	To provide a strong foundation for probabilistic and statistical analysis mostly used in varied applications in Engineering.
3	To focus on exploring the data with the help of graphical representation and data visualisation.
4	To explore optimization and dimensionality reduction techniques.
Course	Outcomes: Learners will be able to
1	Illustrate linear algebra concepts to model, solve and analyze real-world problems.
2	Utilise probability distributions and sampling distributions in real world problems.
3	Articulate an appropriate graph representation for the given data.
4	Apply exploratory data analysis to some real data sets and provide interpretations via relevant visualization
5	Analyze various optimization techniques.
6	Understand Dimension Reduction Algorithms

Module		Topics	Hours.
1.0		Linear Algebra	07
	1.1	Vectors and Matrices, Solving Linear equations, The four Fundamental Subspaces,	
		Eigenvalues and Eigen Vectors, The Singular Value Decomposition (SVD).	
2.0		Probability and Statistics	09
	2.1	Introduction, Random Variables and their probability Distribution, Random	
		Sampling, Sample Characteristics and their Distributions, Chi-Square, t-, and F-	
		Distributions: Exact Sampling Distributions, Sampling from a Bivariate Normal	
		Distribution, The Central Limit Theorem.	
3.0		Introduction to Graphs	10
	3.1	Quantitative vs. Qualitative data, Types of Quantitative data: Continuous data,	
		Discrete data, Types of Qualitative data: Categorical data, Binary data, Ordinary	
		data, Plotting data using Bar graph, Pie chart, Histogram, Stem and Leaf plot, Dot	
		plot, Scatter plot, Time-series graph, Exponential graph, Logarithmic graph,	
		Trigonometric graph, Frequency distribution graph.	

4.0		Exploratory Data Analysis	09
	4.1	Need of exploratory data analysis, cleaning and preparing data, Feature	
		engineering, Missing values, understand dataset through various plots and graphs,	
		draw conclusions, deciding appropriate machine learning models.	
5.0		Optimization Techniques	10
	5.1	Types of optimization- Constrained and Unconstrained optimization,	
		Methods of Optimization- Numerical Optimization, Bracketing Methods-	
		Bisection Method, False Position Method, Newton's Method, Steepest	
		Descent Method, Penalty Function Method.	
6.0		Dimension Reduction Algorithms	07
	6.1	Introduction to Dimension Reduction Algorithms, Linear Dimensionality	
		Reduction: Principal component analysis, Factor Analysis, Linear discriminant	
		analysis.	
	6.2	Non-Linear Dimensionality Reduction: Multidimensional Scaling, Isometric	
		Feature Mapping. Minimal polynomial	
		Total	52

Text Books:

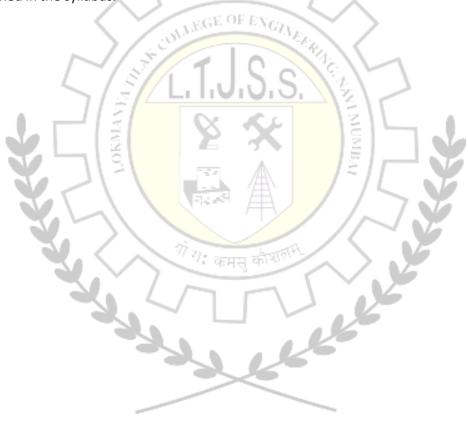
- 1 Linear Algebra for Everyone,
- 2 Gilbert Strang, Wellesley Cambridge Press.
- 3 An Introduction to Probability and Statistics, Vijay Rohatgi, Wiley Publication
- 4 An introduction to Optimization, Second Edition, Wiley-Edwin Chong, Stainslaw Zak.
- 5 Mathematics for Machine Learning, Marc Peter Deisenroth, A. Aldo Faisal, Cheng Soon Ong, Cambridge University Press.
- 6 Exploratory Data Analysis, John Tukey, Princeton University and Bell Laboratories.

References:

- 1 Introduction to Linear Algebra, Gilbert Strang.
- 2 Advanced Engineering Mathematics, Erwin Kreyszig
- 3 Mehryar Mohri, Afshin Rostamizadeh, and Ameet Talwalkar. Foundations of Machine Learning. MIT Press, 2018.
- 4 Shai Shalev-Shwartz and Shai Ben-David. Understanding Machine Learning: From Theory to Algorithms. Cambridge University Press, 2014
- 5 Last updated on Sep 9, 2018.
- 6 Mathematics and Programming for Machine Learning with R, William B. Claster, CRC Press, 2020

Useful Links:

- 1 https://math.mit.edu/~gs/linearalgebra/
- 2 https://www.coursera.org/learn/probability-theory-statistics
- 3 https://nptel.ac.in/courses/111/105/111105090/
- 4 https://onlinecourses.nptel.ac.in/noc21 ma01/preview
- 5 https://ocw.mit.edu/courses/mathematics/18-06-linear-algebra-spring-2010/video-lectures/


Assessment:

Internal Assessment: (20)

- 1 Assessment consists of two class tests of 20 marks each.
- 2 The first-class test is to be conducted when approx. 40% syllabus is completed and second-class test when additional 40% syllabus is completed.
- 3 Duration of each test shall be one hour.

End Semester Theory Examination: (80)

- 1 Question paper will comprise of total 06 questions, each carrying 20 marks.
- 2 **Question No: 01** will be **compulsory** and based on the entire syllabus wherein 4 to 5 sub-questions will be asked.
- 3 Remaining questions will be mixed in nature and randomly selected from all the modules.
- 4 Weightage of each module will be proportional to number of respective lecture hours as mentioned in the syllabus.

Minor/ Honours: Cyber Security

Course Code			Examin	ation Schen	ne			Lecture	
			Marks Distribution	ı		am on (Hrs)		4 Hrs	
	Course Name	Interna	al Assessment	End			Total	Total Credits	
		Mid Sem Exam (MSE)	Continuous Internal Evaluation (CIE)	Semester Exam (ESE)	MSE	ESE	Marks	4	
CSMC401	Network Security & Ethical Hacking	20	20	60	1	2	100		

Prerequisite:	Computer Networks
Course Object	ives: The course aims to
1	Understand Network and Web Security Principles
2	Develop Proficiency in Cryptography and Ethical Hacking
3	Analyze and Mitigate Web and Hardware Security Threats
4	Perform Hands-on Security Analysis and Attack Simulations
Course Outco	mes: Learners will be able to
1	Articulate the fundamentals of Computer Networks, IP Routing, and core concepts of ethical hacking
2	Demonstrate the principles of cryptographic techniques
3	Explain the principles, objectives, and phases of ethical hacking
4	Analyze web security threats, and apply security techniques to protect web applications from cyberattacks
5	Evaluate hardware security threats and its countermeasures
6	Analyze various cyber-attack scenarios, evaluate their impact, and its mitigation techniques

Module	Detailed Contents	Hrs.	CO Mapping
01	Fundamentals of Network Security Fundamentals of Computer Networks/IP protocol stack, IP addressing and routing, Routing protocol, Protocol vulnerabilities, Demonstration of Routing Protocols using Cisco Packet Tracer, Computer security and Network Security (Definition), CIA, Services, Mechanisms and attacks, OSI security architecture, Network security model Self-Learning Topic: OSI, TCP-IP Interconnection	08	CO1
02	Introduction to Cryptography Private-key encryption, public key-encryption, Classical Encryption Techniques, key Exchange Protocols, Cryptographic Hash Functions & applications, steganography, biometric authentication, lightweight cryptographic algorithms. Demonstration of various cryptographic tools and hashing algorithms, Message Authentication Code. Self-Learning Topic: Study of elliptical curve digital signature and its benefits over RSA digital signature	08	CO2

	Introduction to Ethical Hacking		
03	Principles, objectives, and significance of ethical hacking, Hacker Classes. Phases of Ethical Hacking: Footprinting, Scanning, Enumeration, Vulnerability Analysis - Open VAS, Nessus, System hacking: Password cracking, penetration testing methodologies, Social engineering attacks, Malware threats and attack vectors, hacking wireless networks (WEP, WPA, WPA2), Proxy network Study of Network Security tools: Wireshark, John the Ripper, Metasploit Self-Learning Topic: Ransomware (Wannacry), Botnets, Rootkits	12	CO3
	Introduction to web Security and Attacks		
04	Fundamentals of Web Security: OWASP Top 10 vulnerabilities, Web security considerations and best practices. Web Security Threats and Attacks: Bugs and security misconfigurations, Sniffing and ARP poisoning, Denial of Service (DoS) attacks, Clickjacking, Cross-Site Scripting (XSS), Cross-Site Request Forgery (CSRF), Session Hijacking and Management, Phishing and Pharming techniques. Web Security Techniques: Single Sign-On (SSO), OAuth 2.0 and API security, SQL Injection.	10	CO4
05	Hardware Security Threats and Countermeasures Introduction to Hardware Security, Importance of securing hardware components, Threats and risks in embedded systems and IoT devices Side-Channel Attacks), Demonstration of Side-Channel Attacks on RSA, Physical Unclonable Functions, Hardware Security Mechanisms: Firewalls – Protecting network and system hardware, Intrusion Detection Systems (IDS) & Honeypots – Detecting and analyzing cyber threats. Self-Learning Topic: IoT Security Life cycle	10	CO5
	Case Studies and Attack Demonstrations		
06	Various attacks scenarios and their remedies. Demonstration of attacks using Damn Vulnerable Web App (DVWA).	04	CO6

Text Books:

- 1. Network Security and Cryptography -- Bernard Menezes, Cengage Learning
- 2. Computer Security Principles and Practice --William Stallings, Seventh Edition, Pearson Education
- 3. Security in Computing -- Charles P. Pfleeger, Fifth Edition, Pearson Education
- 4. EC-Council "Ethical Hacking and Countermeasures Attack Phases", Cengage Learning
- 5. Network Security Bible -- Eric Cole, Second Edition, Wiley

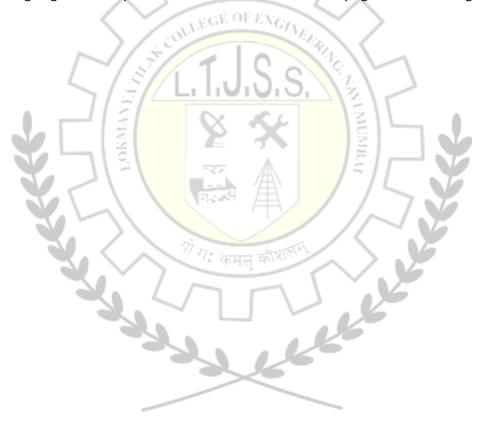
References:

- 1. Cryptography and Network Security -- Atul Kahate, 3rd edition, Tata Mc Graw Hill, 2013
- 2. TCP/IP Protocol Suite -- B. A. Forouzan, 4th Edition, Tata Mc Graw Hill, 2017
- 3. Kevin Smith, "Hacking How to Hack The ultimate Hacking Guide", Hacking Intelligence
- 4. Kevin Beaver, "Hacking for dummies" Wiley publication
- 5. Mark Stamp's Information Security Principles and Practice, Wiley
- 6. https://freevideolectures.com/course/4070/nptel-ethical-hacking
- 7. https://owasp.org/www-project-top-ten/
- 8. https://www.computersecuritystudent.com/

- 9. https://www.opentechinfo.com/learn-use-kali-linux/
- 10. https://pentesterlab.com

A. Mid Semester Exam (20 Marks)

Mid semester examination will be based on 40 % to 50% of the syllabus.


B. Continuous Internal Evaluation (20 Marks)

1. Assignment: 5 Marks

2. Quiz/Open book test/Presentation: 10 Marks

3. Regularity and attendance: 5 Marks

End Semester Examination (60 Marks)

Minor/ Honours: 3D Printing

Course Code			Examin	ation Schen	ne			Lecture
			Marks Distribution	1		am on (Hrs)		4 Hrs
	Course Name	Interna	al Assessment	End Semester			Total Marks	Total Credits
		Mid Sem Exam (MSE)	Continuous Internal Evaluation (CIE)	Exam (ESE)	MSE	ESE	IVIdIKS	4
DPMC401	Introduction to CAD	20	20	60	1	2	100	

Prerequ	uisite: Basic knowledge of Engineering Graphics
Course	Objectives:
1	To impart the 3D modelling skills for development of 3D models of basic engineering components.
2	To familiarize with basic concepts of computer graphics.
3	To familiarize with basic concepts of additive and subtractive manufacturing process
Course	Outcomes: Learners will be able to
1	Illustrate basic understanding of design.
2	Create the CAM Toolpath for specific given operations.
3	Illustrate basic understanding of types of CAD model creation.
4	Generate assembly models of given objects using assembly tools of a modelling software.
5	Identify suitable computer graphics techniques for 3D modelling.
6	Transform, manipulate objects & store and manage data.

Module	ा कमसु की शहर		СО
	Detailed Contents	Hrs.	Mapping
	Design thinking		
01	Identification of need, Embodiment of design, Generation of ideas and	06	CO1
	research topics		
	Manufacturing		
	Subtractive Manufacturing:		
02	Introduction to NC/CNC/DNC machines		
02	Additive Manufacturing:	07	CO2
	Introduction to 3D Printing, Limitations of Subtractive manufacturing,		
	Digital fabrication		
	CAD Introduction		
03	History & Scope of CAD, CAD hardware and software, Advantages,	08	CO3
	Disadvantages and Applications of CAD		
	Introduction to 2D modelling		
04	CAD models Creation, Types and uses of models from different		
04	perspectives	08	CO4
	Introduction to assembly drawing:		

	Types of assembly drawings, part drawings, drawings for catalogues and instruction manuals, patent drawings, drawing standards		
	Computer Graphics		
	Overview of 2D and 3D Computer Graphics, Parametric representation		
	of curves: Synthetic Curves - Bezier curves, Hermite Curves, B-spline		
05	curves	07	CO5
	Geometric Modelling:		
	Wire Frame Modelling, Solid Modelling, Surface Modelling, Parametric		
	Modelling, Feature based Modelling, Constraint Based Modelling.		
	Geometric Transformation		
06	2D & 3D Transformations (Translation, Rotation, & Scaling &	07	CO6
	Reflection), Concatenations		

Text/Reference Books: -

- 1. Machine Drawing by N.D. Bhatt.
- 2. A textbook of Machine Drawing by Laxminarayan and M.L.Mathur, Jain brothers Delhi

EGE OF ENGY

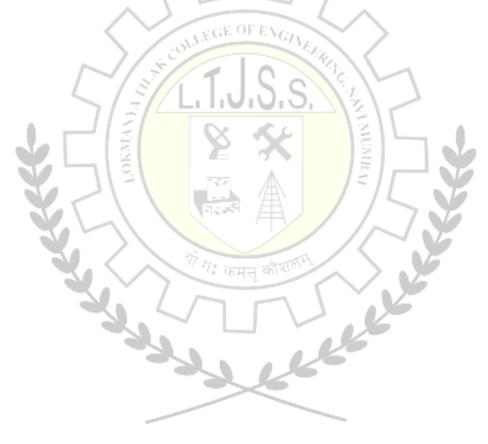
- 3. CAD/ CAM, Theory & Practice, Ibrahim Zeid, R. Sivasubramanian, Tata McGraw Hill Publications
- 4. CAD/CAM Principles and Applications, P. N. Rao, Tata McGraw Hill Publications
- 5. CAD/CAM Computer Aided and Manufacturing, Mikell P. Groover and Emory W. Zimmers, Jr., Eastern Economy Edition
- 6. CNC Technology and Programming, Krar, S., and Gill, A., McGraw Hill Publishers.
- Medical Modelling The Application of Advanced Design and Rapid Prototyping Techniques in Medicine, Richard Bibb, Dominic Eggbeer and Abby Paterson, Woodhead Publishing Series in Biomaterials: Number 91, Elsevier Ltd.
- 8. Additive Manufacturing Technologies: Rapid Prototyping to Direct Digital Manufacturing, I. Gibson I D. W. Rosen I B. Stucker, Springer Publication.

Website Reference / Video Courses:

- 1. https://nptel.ac.in/courses/112/102/112102101/
- 2. https://nptel.ac.in/courses/106/102/106102065/
- 3. https://nptel.ac.in/courses/106/102/106102065/
- 4. https://nptel.ac.in/courses/112/102/112102103/
- 5. https://nptel.ac.in/courses/112/105/112105211/
- 6. https://nptel.ac.in/courses/112/104/112104265/
- 7. https://www.youtube.com/watch?v=2cCMty9v3Tg
- 8. https://www.youtube.com/watch?v=2zPh26Q1BT8

A. Mid Semester Exam (20 Marks)

Mid semester examination will be based on 40 % to 50% of the syllabus.


B. Continuous Internal Evaluation (20 Marks)

1. Assignment: 5 Marks

2. Quiz/Open book test/Presentation: 10 Marks

3. Regularity and attendance: 5 Marks

End Semester Examination (60 Marks)

Minor/ Honours: Electric Vehicles

Course Code			Examination Scheme					Lecture	
			Marks Distribution	1		am on (Hrs)		4 Hrs	
	Course Name	Interna	al Assessment	End			Total Marks	Total Credits	
		Mid Sem Exam (MSE)	Continuous Internal Evaluation (CIE)	Semester Exam (ESE)	MSE	ESE	IVIATES	4	
EVMC401	Vehicular Systems and Dynamics	20	20	60	1	2	100		

Prere	equisite: Basic knowledge of Electrical systems
Cour	se Objectives: The course aims
1	To study different automotive components and subsystems
2	To explore and compare the transition of automotive domain from ICE to electric vehicles
3	To study the architecture used in EV/ HEV
Cour	se Outcomes: Learners will be able to
1	Explain the general configuration and identify various components of automobile.
2	Demonstrate the functionality and principles of different types of Automotive Powertrains
	working
3	Explain illustrate the working of various automotive transmission systems
4	Identify and illustrate the various hybrid electric powertrains and their different modes of
	operations
5	Explain the basic and state of the art of Electric vehicles and its major parts.
6	Compare and contrast the performance of ICE vehicles, HEVs and EVs

^{२७} गः कमस् कीश^{ला}

Module			СО
Wiodule	Detailed Contents	Hrs.	Mapping
	Vehicle Mechanics		
01	History of Vehicle Development, General Configuration of Automobile, Body and Chassis Fundamentals: General Packaging, Types of Structural System, Backbone Construction; Body and Chassis Materials. Automotive Powertrain Mechanical, Suspensions system, Steering System, NVH, Control System Integration and Implementation. Front-Wheel Drive (FWD) Powertrains, Rear-Wheel Drive Powertrains (RWD),	10	CO1
	Multi-Wheel Drive Powertrains (AWD and 4WD) Transmission Systems		
02	Transmission gears, Manual Transmission (MT), Automatic Transmission (AT), Automated Manual Transmissions (AMT) and Continuously Variable Transmissions (CVT); Manual Transmissions Powertrain Layout and Manual Transmission Structure, Power Flows and Gear Ratios, Manual Transmission Clutch and its structure. Drivetrain and Differential Self-Learning Topic: Power train assembly, idea of gears	10	CO2
03	Automotive Subsystems	06	СОЗ

	Automotive Aero-dynamics, Vehicle Power Demand Analysis; Types of suspension and drive, Braking systems, Tyre Mechanics: Tyres and wheels, Tyre characteristics; Vehicle handling & stability; Automotive instrumentation		
	Self-Learning Topic: Forces acting on vehicle movement		
	ICE Performance Characteristics:		
04	Power and torque generation, specific fuel consumption, specific emissions, Efficiencies- fuel conversion efficiency, mechanical efficiency, volumetric efficiency	06	CO4
	Self-learning Topic: Ideal characteristics of ICE,		
	Hybrid Powertrain		
05	Series HEVs, Parallel HEVs, Series—Parallel HEVs, Complex HEVs, Operating Modes, Degree of Hybridization, Comparison of HEVs, Plug-in Hybrid Electric Vehicles (PHEVs), Real Life examples of HEVs	10	CO5
	Electric Vehicles		
06	Basics of Electric Vehicles, Current Status and Trends for EVs, Battery Electric Vehicles (BEVs), Fuel-Cell Electric Vehicles (FCEVs), Electric Machines for EV applications, EV Transmission: Single-Speed EV Transmission, Multiple Ratio EV Transmissions. Comparison of ICE vehicle with HEVs and EVs. National Policy for adoption of EVs	10	CO6
	Self-Learning Topic: Specifications of AC/DC motors used in EV and HEV		

Text Books:

- 1. Vehicle Powertrain Systems by Behrooz Mashadi and David Crolla, Wiley, 2012
- 2. Automotive Aerodynamics by Joseph Katz, Wiley, 2016
- 3. Automotive Chassis Engineering, by David C. Barton and John D. Fieldhouse, Springer, 2018
- 4. Automotive Engineering Powertrain, Chassis System and Vehicle Body Edited by David A. Crolla, Elsevier, 2009
- 5. Automotive Power Transmission Systems by Yi Zhang and Chris Mi, Wiley, 2018
- 6. Linear Electric Machines, Drives, and MAGLEVs Handbook, by Ion Boldea, CRC Press. 2013
- 7. Modern Electric, Hybrid Electric, and Fuel Cell Vehicles by Mehrdad Ehsani, Yimin Gao, Sebastien E. Gay, and Ali Emadi, CRC Press 2005
- 8. Electric Vehicle Technology Explained by James Larminie and John Lowry, John Wiley, 2003
- 9. Electric And Hybrid Vehicles- Design Fundamentals by Iqbal Husain, CRC Press, 2005 Edition.

Reference Books:-

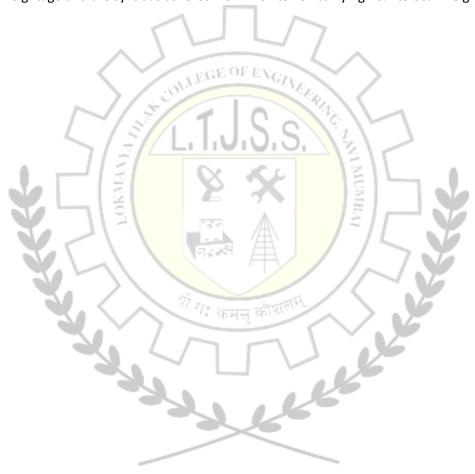
- 1. Encyclopaedia of Automotive Engineering edited by David Crolla et al, Wiley, 2014
- 2. Design and Control of Automotive Propulsion Systems by Zongxuan Sun and Guoming Zhu, CRC Press, 2015
- 3. The Automotive Transmission Book by Robert Fischer, Ferit Küçükay, Gunter Jürgens, Rolf Najork, and Burkhard Pollak, Springer, 2015
- 4. Noise and Vibration Control in Automotive Bodies by Jian Pang, Wiley, 2019

Website Reference / Video Courses:

1. NPTEL Web course: Fundamentals of Automotive Systems, by Prof. C.S. Shankar Ram, IIT Madras, https://nptel.ac.in/courses/107/106/107106088/

A. Mid Semester Exam (20 Marks)

Mid semester examination will be based on 40 % to 50% of the syllabus.


B. Continuous Internal Evaluation (20 Marks)

1. Assignment: 5 Marks

2. Quiz/Open book test/Presentation: 10 Marks

3. Regularity and attendance: 5 Marks

End Semester Examination (60 Marks)

